본문으로 바로가기

병원뉴스

서울대병원, 대규모 수면 데이터셋 활용 이미지 기반 수면 단계 자동 판독 알고리즘 개발

조회수 : 1178 작성일 : 2024-02-15

- 세계 최대 규모 수면다원검사 데이터셋 구축 후 이미지 기반 인공지능 알고리즘 개발
- 자동 판독으로 약 80% 이상의 수면 단계 분류 정확도 나타내... 수면 의료 효율성 향상 기대


  수면 단계 분류를 높은 정확도와 설명 가능한 방식으로 보여주는 ‘이미지 기반 자동 판독 알고리즘’이 최근 국내 연구진에 의해 개발됐다. 이를 활용하면 판독 과정 자동화를 통해 수면 데이터 판독 소요시간을 대폭 줄일 수 있을 것으로 기대된다.


  서울대병원 신현우 교수 · 한림대 춘천성심병원 김동규 교수 공동 연구팀은 세계 최대 규모의 수면다원검사 데이터셋을 활용한 이미지 기반 자동 판독 알고리즘을 개발하고 수면 단계 판독 및 수면 생체 신호를 시각화한 연구 결과를 14일 발표했다.


  수면 단계 분류는 수면 관련 질환을 진단하는 데 필수적이며, 수면의 질을 평가하는 데 중요한 역할을 한다. 보통 수면 단계는 Wake-N1-N2-N3-REM의 5단계로 각성(Wake), 얕은 수면(N1~N2), 깊은 수면(N3~REM) 단계로 분류된다.


  수면 데이터 분석을 위한 기존 연구에서는 검사 환경에 있어 샘플링 속도나 센서의 타입이 변할 때마다 판독자가 직접 조정을 해야 하는 한계가 있었다. 따라서 보다 효과적인 수면 단계 분석을 위해서는 다양한 검사 및 판독 환경에 일반적으로 적용될 수 있는 자동화된 기술과 수면 결과를 더욱 면밀하게 해석할 수 있는 프레임이 필요한 상황이었다.


  이에 연구팀은 세계 최대 규모인 10,253건의 수면다원검사 데이터셋을 구축하고, 이 중 7,745건의 데이터를 활용해 ‘이미지 기반 의료 인공지능 알고리즘’을 개발했다. 이후 수면 단계 자동 판독 가능성을 분석했다.


  분석 결과, 새로 개발된 이미지 기반 자동 판독 알고리즘은 약 80% 이상의 수면 단계 분류 정확도를 보였다. 이는 기존에 보고된 ‘의료진 판독자 간의 수면 결과 판독 일치율’과 유사한 수준이었다.


  특히 연구팀은 시각적으로 파악할 수 있는 생체 신호 데이터의 표준화된 이미지를 바탕으로 인공지능 모델의 학습 패턴을 구현해냈다. 생체 신호의 시각화는 알고리즘이 수면 단계별로 어느 부분에 초점을 맞추고 있는지 파악하는 데 도움을 준다. 이는 기존 인공지능 모델이 내놓은 판단이나 결정 과정 혹은 방법에 대해 설명할 수 없는 이른바 ‘인공지능 블랙박스’ 문제를 해결할 수 있는 가능성을 제시한다고 연구팀은 설명했다.


다양한 수면 생체 신호를 표준화
[이미지1] 다양한 수면 생체 신호를 표준화해 구성한 고해상도 이미지.


  추가적으로 연구팀은 미국 수면 데이터셋인 SHHS을 활용해 외부 검증을 실시했다. 검증 결과, 일부 신호의 누락이나 변경 혹은 다른 기종의 검사기기 등의 검사 환경의 차이에도 불구하고, 내부 검증과 동일한 수준(Weighted F1-Score 79.7~81.7%)을 보여 인종이나 국가에 상관없이 알고리즘 분석 적용이 가능하다고 연구팀은 덧붙였다.*Weighted F1-Score: 분류 모델을 평가할 때 사용되는 값으로, 높을수록 모델의 분류 성능이 뛰어남.


수면 단계 자동 분류 알고리즘의 프레임
[이미지2] 수면 단계 자동 분류 알고리즘의 프레임. 생체신호(Signal)를 이미지(Image)로 나타내고 데이터셋으로 저장한 후,
수면 단계 자동 판독 알고리즘의 입력값으로 사용했다.


  이번 연구 결과는 미가공 데이터를 이용해 AI를 학습시켰던 기존 연구와 달리, 수면 생체 신호의 경향성을 시각적으로 설명이 가능한 이미지로 학습시키고 수면 단계 분류를 판독했다는 점에서 차별성이 있다고 연구팀은 강조했다.


  이비인후과 신현우 교수는 “의료 인공지능 모델에서 요구되는 설명 가능성을 충족할 수 있는 이미지 기반의 수면 단계 자동 판독 알고리즘을 개발했다는 점에서  큰 의미가 있다”라며 “이번 연구결과가 향후 AI 기반 수면다원검사 자동 판독을 더욱 활성화하고 수면 의료의 효율성 향상에 기여할 수 있기를 기대한다”고 말했다.


  한편 이번 연구 결과는 수면의학 관련 국제학술지 ‘수면(Sleep)’ 최근호에 게재됐다.


서울대병원 신현우 교수, 한림대춘천성심병원 김동규 교수
[사진 왼쪽부터] 서울대병원 신현우 교수, 한림대춘천성심병원 김동규 교수


홈페이지 오류신고

서울대학교병원 홈페이지의 불편한점이나 개선사항 등의 의견을 작성해 주시면 검토 후 반영하도록 하겠습니다.
진료과 및 의료진 추천이나 진료일정 및 상담 문의는 진료 예약센터로 전화해 주십시오. 예약센터 : 1588-5700

홈페이지 의견접수 입력
홈페이지 의견접수(작성자, 연락처, 이메일, 구분, 제목, 내용)
작성자
*연락처 - -
*이메일 @
구분
*제목
*내용

1. 수집 항목 : 작성자명, 연락처, 이메일 주소

2. 수집 및 이용 목적 : 의견 회신에 따른 연락처 정보 확인

3. 보유 및 이용 기간 : 상담 서비스를 위해 검토 완료 후 3개월 간 보관하며,
이후 해당 정보를 지체 없이 파기

만족도 통계

만족도 통계(페이지, 총응답자, 정보게시일)
페이지
총응답자
정보게시일

매우만족

만족

보통

불만족

매우 불만족

이메일주소 무단수집 거부

본 웹사이트에서는 이메일 주소가 무단 수집되는 것을 거부하며,
위반 시, 정보통신망법에 의해 처벌됨을 유념하시기 바랍니다.

뷰어 다운로드

뷰어는 파일 문서 보기만 지원하는 프로그램입니다.
뷰어로는 문서 내용을 수정하거나 삭제, 편집 할 수 없습니다.

서울대학교병원에서 사용하는 문서는 한글2002, 워드, 파워포인트, 엑셀, PDF(아크로뱃리더) 5가지 입니다.

사용하시는 컴퓨터에 해당 뷰어가 설치되어 있지 않은 경우 뷰어를 다운로드 받아 각 개인 컴퓨터에 설치하셔야 합니다.
뷰어는 사용하시는 컴퓨터에 한 번만 설치하시면 됩니다.

홈페이지 의견접수

서울대학교병원 홈페이지의

개선사항에 대한 의견을 보내주시면 검토하여보다
편리한 홈페이지
를 만들겠습니다.


※ 개별 답변을 드리는 창구가 아니오며,
병원에 대한 전반적인 문의는 전화'1588-5700' (예약문의: 1번, 기타: 2번)로,
불편이나 고충 관련고객의 소리로 접수 부탁드립니다.

홈페이지 의견접수 입력
홈페이지 의견접수(작성자, 구분, 제목, 내용)
작성자
구분
*제목
*내용

개인정보 수집/이용 목적

※ 개인정보 수집/이용 목적

1. 수집/이용 목적: 홈페이지 의견접수를 통한 개선사항 검토 및 반영
2. 수집하는 항목: 이름, 제목, 내용
3. 개인정보의 보유 및 이용기간 : 2년
4. 동의를 거부할 권리가 있으며, 전화예약상담(1588-5700)또는 고객상담실(02-2072-2002​)을 이용하실 수
   있습니다.

전체 메뉴

전체 검색

전체 검색